Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Aging ; 4(1): 7-9, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191688
2.
Nat Commun ; 14(1): 8054, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052795

RESUMO

Hyaluronic acid is a major component of extracellular matrix which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (Heterocephalus glaber) contains abundant high-molecular-mass hyaluronic acid in its tissues, which contributes to this species' cancer resistance and possibly to its longevity. Here we report that abundant high-molecular-mass hyaluronic acid is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These subterranean mammalian species accumulate abundant high-molecular-mass hyaluronic acid by regulating the expression of genes involved in hyaluronic acid degradation and synthesis and contain unique mutations in these genes. The abundant high-molecular-mass hyaluronic acid may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic conditions. Our work suggests that high-molecular-mass hyaluronic acid has evolved with subterranean lifestyle.


Assuntos
Ácido Hialurônico , Neoplasias , Animais , Longevidade/genética , Mamíferos , Ratos-Toupeira/genética , Mutação
3.
Ageing Res Rev ; 92: 102132, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37984625

RESUMO

Repurposing drugs already approved in the clinic to be used off-label as geroprotectors, compounds that combat mechanisms of aging, are a promising way to rapidly reduce age-related disease incidence in society. Several recent studies have found that a class of drugs-nucleoside reverse transcriptase inhibitors (NRTIs)-originally developed as treatments for cancers and human immunodeficiency virus (HIV) infection, could be repurposed to slow the aging process. Interestingly, these studies propose complementary mechanisms that target multiple hallmarks of aging. At the molecular level, NRTIs repress LINE-1 elements, reducing DNA damage, benefiting the hallmark of aging of 'Genomic Instability'. At the organellar level, NRTIs inhibit mitochondrial translation, activate ATF-4, suppress cytosolic translation, and extend lifespan in worms in a manner related to the 'Loss of Proteostasis' hallmark of aging. Meanwhile, at the cellular level, NRTIs inhibit the P2X7-mediated activation of the inflammasome, reducing inflammation and improving the hallmark of aging of 'Altered Intercellular Communication'. Future development of NRTIs for human aging health will need to balance out toxic side effects with the beneficial effects, which may occur in part through hormesis.


Assuntos
Infecções por HIV , Inibidores da Transcriptase Reversa , Humanos , Inibidores da Transcriptase Reversa/efeitos adversos , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Reposicionamento de Medicamentos , Infecções por HIV/tratamento farmacológico , Envelhecimento
4.
Sci Rep ; 13(1): 21055, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030702

RESUMO

Descriptions of karyotypes of many animal species are currently available. In addition, there has been a significant increase in the number of sequenced genomes and an ever-improving quality of genome assembly. To close the gap between genomic and cytogenetic data we applied fluorescent in situ hybridization (FISH) and Hi-C technology to make the first full chromosome-level genome comparison of the guinea pig (Cavia porcellus), naked mole-rat (Heterocephalus glaber), and human. Comparative chromosome maps obtained by FISH with chromosome-specific probes link genomic scaffolds to individual chromosomes and orient them relative to centromeres and heterochromatic blocks. Hi-C assembly made it possible to close all gaps on the comparative maps and to reveal additional rearrangements that distinguish the karyotypes of the three species. As a result, we integrated the bioinformatic and cytogenetic data and adjusted the previous comparative maps and genome assemblies of the guinea pig, naked mole-rat, and human. Syntenic associations in the two hystricomorphs indicate features of their putative ancestral karyotype. We postulate that the two approaches applied in this study complement one another and provide complete information about the organization of these genomes at the chromosome level.


Assuntos
Genoma , Ratos-Toupeira , Humanos , Cobaias , Animais , Sintenia , Hibridização in Situ Fluorescente , Cariótipo , Ratos-Toupeira/genética
5.
Cell Rep ; 42(9): 113130, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708026

RESUMO

The naked mole rat (NMR) is the longest-lived rodent, resistant to multiple age-related diseases including neurodegeneration. However, the mechanisms underlying the NMR's resistance to neurodegenerative diseases remain elusive. Here, we isolated oligodendrocyte progenitor cells (OPCs) from NMRs and compared their transcriptome with that of other mammals. Extracellular matrix (ECM) genes best distinguish OPCs of long- and short-lived species. Notably, expression levels of CD44, an ECM-binding protein that has been suggested to contribute to NMR longevity by mediating the effect of hyaluronan (HA), are not only high in OPCs of long-lived species but also positively correlate with longevity in multiple cell types/tissues. We found that CD44 localizes to the endoplasmic reticulum (ER) and enhances basal ATF6 activity. CD44 modifies proteome and membrane properties of the ER and enhances ER stress resistance in a manner dependent on unfolded protein response regulators without the requirement of HA. HA-independent role of CD44 in proteostasis regulation may contribute to mammalian longevity.


Assuntos
Estresse do Retículo Endoplasmático , Longevidade , Animais , Longevidade/fisiologia , Resposta a Proteínas não Dobradas , Transcriptoma , Ratos-Toupeira
6.
Nature ; 621(7977): 196-205, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37612507

RESUMO

Abundant high-molecular-mass hyaluronic acid (HMM-HA) contributes to cancer resistance and possibly to the longevity of the longest-lived rodent-the naked mole-rat1,2. To study whether the benefits of HMM-HA could be transferred to other animal species, we generated a transgenic mouse overexpressing naked mole-rat hyaluronic acid synthase 2 gene (nmrHas2). nmrHas2 mice showed an increase in hyaluronan levels in several tissues, and a lower incidence of spontaneous and induced cancer, extended lifespan and improved healthspan. The transcriptome signature of nmrHas2 mice shifted towards that of longer-lived species. The most notable change observed in nmrHas2 mice was attenuated inflammation across multiple tissues. HMM-HA reduced inflammation through several pathways, including a direct immunoregulatory effect on immune cells, protection from oxidative stress and improved gut barrier function during ageing. These beneficial effects were conferred by HMM-HA and were not specific to the nmrHas2 gene. These findings demonstrate that the longevity mechanism that evolved in the naked mole-rat can be exported to other species, and open new paths for using HMM-HA to improve lifespan and healthspan.


Assuntos
Envelhecimento Saudável , Hialuronan Sintases , Ácido Hialurônico , Longevidade , Ratos-Toupeira , Animais , Camundongos , Ácido Hialurônico/biossíntese , Ácido Hialurônico/metabolismo , Inflamação/genética , Inflamação/imunologia , Inflamação/prevenção & controle , Camundongos Transgênicos , Ratos-Toupeira/genética , Longevidade/genética , Longevidade/imunologia , Longevidade/fisiologia , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Envelhecimento Saudável/genética , Envelhecimento Saudável/imunologia , Envelhecimento Saudável/fisiologia , Transgenes/genética , Transgenes/fisiologia , Transcriptoma , Neoplasias/genética , Neoplasias/prevenção & controle , Estresse Oxidativo , Gerociência , Rejuvenescimento/fisiologia
7.
Cell ; 186(13): 2929-2949.e20, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37269831

RESUMO

Lifespan varies within and across species, but the general principles of its control remain unclear. Here, we conducted multi-tissue RNA-seq analyses across 41 mammalian species, identifying longevity signatures and examining their relationship with transcriptomic biomarkers of aging and established lifespan-extending interventions. An integrative analysis uncovered shared longevity mechanisms within and across species, including downregulated Igf1 and upregulated mitochondrial translation genes, and unique features, such as distinct regulation of the innate immune response and cellular respiration. Signatures of long-lived species were positively correlated with age-related changes and enriched for evolutionarily ancient essential genes, involved in proteolysis and PI3K-Akt signaling. Conversely, lifespan-extending interventions counteracted aging patterns and affected younger, mutable genes enriched for energy metabolism. The identified biomarkers revealed longevity interventions, including KU0063794, which extended mouse lifespan and healthspan. Overall, this study uncovers universal and distinct strategies of lifespan regulation within and across species and provides tools for discovering longevity interventions.


Assuntos
Longevidade , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Longevidade/genética , Fosfatidilinositol 3-Quinases/genética , Envelhecimento/genética , Mamíferos/genética , Perfilação da Expressão Gênica
8.
Biol Rev Camb Philos Soc ; 98(5): 1668-1686, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157910

RESUMO

Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.


Assuntos
Neoplasias , Filosofia , Pesquisa , Estudos Interdisciplinares
9.
bioRxiv ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37215017

RESUMO

Hyaluronic acid (HA) is a major component of extracellular matrix (ECM) which plays an important role in development, cellular response to injury and inflammation, cell migration, and cancer. The naked mole-rat (NMR, Heterocephalus glaber ) contains abundant high-molecular-mass HA (HMM-HA) in its tissues, which contributes to this species' cancer resistance and possibly longevity. Here we report that abundant HMM-HA is found in a wide range of subterranean mammalian species, but not in phylogenetically related aboveground species. These species accumulate abundant HMM-HA by regulating the expression of genes involved in HA degradation and synthesis and contain unique mutations in these genes. The abundant high molecular weight HA may benefit the adaptation to subterranean environment by increasing skin elasticity and protecting from oxidative stress due to hypoxic subterranean environment. HMM-HA may also be coopted to confer cancer resistance and longevity to subterranean mammals. Our work suggests that HMM-HA has evolved with subterranean lifestyle.

10.
Cell ; 186(5): 901-903, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868212

RESUMO

Accelerating the development of tools for non-model animal research, Dejosez et al. report the generation of induced pluripotent stem cells (iPSCs) from bats using a modified Yamanaka protocol. Their study also reveals that bat genomes harbor diverse and unusually abundant endogenous retroviruses (ERVs) that are reactivated during iPSC reprogramming.


Assuntos
Quirópteros , Retrovirus Endógenos , Células-Tronco Pluripotentes Induzidas , Animais
12.
Subcell Biochem ; 102: 1-6, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36600127

RESUMO

We outline the progression of ageing research from ancient history to present day geroscience. Calorie restriction, genetic mutations, and the involvement of the sirtuins are highlighted, along with pharmaceutical interventions, in particular rapamycin. At the cellular level, replicative senescence and telomere shortening are presented in the history of ageing studies. We discuss the roles of macromolecular damage in ageing including damage to nuclear, and mitochondrial DNA, epigenetic and protein damage. The importance inflammation during ageing "inflammageing" is becoming increasingly recognized. Omics-based biomarkers are now proving to be a promising approach, along with comparative studies on long-lived animals. The science is getting closer to understanding the mechanisms of ageing and developing reliable interventions to improve human health.


Assuntos
Envelhecimento , Senescência Celular , Humanos , Animais , Senescência Celular/genética , Envelhecimento/genética , DNA Mitocondrial/genética , Mutação , Mitocôndrias/genética
13.
Nat Rev Immunol ; 23(2): 75-89, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35831609

RESUMO

Genomic instability is an important driver of ageing. The accumulation of DNA damage is believed to contribute to ageing by inducing cell death, senescence and tissue dysfunction. However, emerging evidence shows that inflammation is another major consequence of DNA damage. Inflammation is a hallmark of ageing and the driver of multiple age-related diseases. Here, we review the evidence linking DNA damage, inflammation and ageing, highlighting how premature ageing syndromes are associated with inflammation. We discuss the mechanisms by which DNA damage induces inflammation, such as through activation of the cGAS-STING axis and NF-κB activation by ATM. The triggers for activation of these signalling cascades are the age-related accumulation of DNA damage, activation of transposons, cellular senescence and the accumulation of persistent R-loops. We also discuss how epigenetic changes triggered by DNA damage can lead to inflammation and ageing via redistribution of heterochromatin factors. Finally, we discuss potential interventions against age-related inflammation.


Assuntos
Envelhecimento , Dano ao DNA , Humanos , Envelhecimento/genética , Senescência Celular/genética , Inflamação/genética , Morte Celular
14.
Front Aging ; 4: 1323194, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322248

RESUMO

Unlike aged somatic cells, which exhibit a decline in molecular fidelity and eventually reach a state of replicative senescence, pluripotent stem cells can indefinitely replenish themselves while retaining full homeostatic capacity. The conferment of beneficial-pluripotency related traits via in vivo partial cellular reprogramming in vivo partial reprogramming significantly extends lifespan and restores aging phenotypes in mouse models. Although the phases of cellular reprogramming are well characterized, details of the rejuvenation processes are poorly defined. To understand whether cellular reprogramming can ameliorate DNA damage, we created a reprogrammable accelerated aging mouse model with an ERCC1 mutation. Importantly, using enhanced partial reprogramming by combining small molecules with the Yamanaka factors, we observed potent reversion of DNA damage, significant upregulation of multiple DNA damage repair processes, and restoration of the epigenetic clock. In addition, we present evidence that pharmacological inhibition of ALK5 and ALK2 receptors in the TGFb pathway are able to phenocopy some benefits including epigenetic clock restoration suggesting a role in the mechanism of rejuvenation by partial reprogramming.

15.
EMBO J ; 41(21): e110393, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36215696

RESUMO

Sirtuin 6 (SIRT6) is a deacylase and mono-ADP ribosyl transferase (mADPr) enzyme involved in multiple cellular pathways implicated in aging and metabolism regulation. Targeted sequencing of SIRT6 locus in a population of 450 Ashkenazi Jewish (AJ) centenarians and 550 AJ individuals without a family history of exceptional longevity identified enrichment of a SIRT6 allele containing two linked substitutions (N308K/A313S) in centenarians compared with AJ control individuals. Characterization of this SIRT6 allele (centSIRT6) demonstrated it to be a stronger suppressor of LINE1 retrotransposons, confer enhanced stimulation of DNA double-strand break repair, and more robustly kill cancer cells compared with wild-type SIRT6. Surprisingly, centSIRT6 displayed weaker deacetylase activity, but stronger mADPr activity, over a range of NAD+ concentrations and substrates. Additionally, centSIRT6 displayed a stronger interaction with Lamin A/C (LMNA), which was correlated with enhanced ribosylation of LMNA. Our results suggest that enhanced SIRT6 function contributes to human longevity by improving genome maintenance via increased mADPr activity and enhanced interaction with LMNA.


Assuntos
Lamina Tipo A , Sirtuínas , Idoso de 80 Anos ou mais , Humanos , Centenários , Alelos , Instabilidade Genômica
16.
Nanoscale ; 14(39): 14594-14602, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36155714

RESUMO

Naked mole rats (NMRs) demonstrate exceptional longevity and resistance to cancer. Using a biochemical approach, it was previously shown that the treatment of mouse fibroblast cells with RasV12 oncogene and SV40 Large T antigen (viral oncoprotein) led to malignant transformations of cells. In contrast, NMR fibroblasts were resistant to malignant transformations upon this treatment. Here we demonstrate that atomic force microscopy (AFM) can provide information which is in agreement with the above finding, and further, adds unique information about the physical properties of cells that is impossible to obtain by other existing techniques. AFM indentation data were collected from individual cells and subsequently processed through the brush model to obtain information about the mechanics of the cell body (absolute values of the effective Young's moduli). Furthermore, information about the physical properties of the pericellular layer surrounding the cells was obtained. We found a statistically significant decrease in the rigidity of mouse cells after the treatment, whereas there was no significant change found in the rigidity of NMR cells upon the treatment. We also found that the treatment caused a substantial increase in a long part of the pericellular layer in NMR cells only (the long brush was defined as having a size of >10 microns). The mouse cells and smaller brush did not show statistically significant changes upon treatment. The observed change in cell mechanics is in agreement with the frequently observed decrease in cell rigidity during progression towards cancer. The change in the pericellular layer due to the malignant transformation of fibroblast cells has practically not been studied, though it was shown that the removal of part of the pericellular layer of NMR fibroblasts made the cells susceptible to malignant transformation. Although it is plausible to speculate that the observed increase in the long part of the brush layer of NMR cells might help cells to resist malignant transformations, the significance of the observed change in the pericellular layer is yet to be understood. As of now, we can conclude that changes in cell mechanics might be used as an indication of the resistance of NMR cells to malignant transformations.


Assuntos
Ratos-Toupeira , Neoplasias , Animais , Antígenos Virais de Tumores , Fibroblastos/patologia , Camundongos , Neoplasias/patologia , Proteínas Oncogênicas
17.
J Invest Dermatol ; 142(11): 2853-2863.e4, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35691364

RESUMO

Naked mole-rats (NMRs) (Heterocephalus glaber) are long-lived mammals that possess a natural resistance to cancer and other age-related pathologies, maintaining a healthy life span >30 years. In this study, using immunohistochemical and RNA-sequencing analyses, we compare skin morphology, cellular composition, and global transcriptome signatures between young and aged (aged 3‒4 vs. 19‒23 years, respectively) NMRs. We show that similar to aging in human skin, aging in NMRs is accompanied by a decrease in epidermal thickness; keratinocyte proliferation; and a decline in the number of Merkel cells, T cells, antigen-presenting cells, and melanocytes. Similar to that in human skin aging, expression levels of dermal collagens are decreased, whereas matrix metalloproteinase 9 and matrix metalloproteinase 11 levels increased in aged versus in young NMR skin. RNA-sequencing analyses reveal that in contrast to human or mouse skin aging, the transcript levels of several longevity-associated (Igfbp3, Igf2bp3, Ing2) and tumor-suppressor (Btg2, Cdkn1a, Cdkn2c, Dnmt3a, Hic1, Socs3, Sfrp1, Sfrp5, Thbs1, Tsc1, Zfp36) genes are increased in aged NMR skin. Overall, these data suggest that specific features in the NMR skin aging transcriptome might contribute to the resistance of NMRs to spontaneous skin carcinogenesis and provide a platform for further investigations of NMRs as a model organism for studying the biology and disease resistance of human skin.


Assuntos
Proteínas Imediatamente Precoces , Envelhecimento da Pele , Animais , Humanos , Camundongos , Genes Supressores de Tumor , Proteínas de Homeodomínio/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Longevidade/genética , Metaloproteinase 11 da Matriz/genética , Metaloproteinase 11 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , RNA/metabolismo , Envelhecimento da Pele/genética , Proteínas Supressoras de Tumor/genética
18.
EMBO J ; 41(15): e109694, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35694726

RESUMO

Naked mole rats (NMRs) are the longest-lived rodents yet their stem cell characteristics remain enigmatic. Here, we comprehensively mapped the NMR hematopoietic landscape and identified unique features likely contributing to longevity. Adult NMRs form red blood cells in spleen and marrow, which comprise a myeloid bias toward granulopoiesis together with decreased B-lymphopoiesis. Remarkably, youthful blood and marrow single-cell transcriptomes and cell compositions are largely maintained until at least middle age. Similar to primates, the primitive stem and progenitor cell (HSPC) compartment is marked by CD34 and THY1. Stem cell polarity is seen for Tubulin but not CDC42, and is not lost until 12 years of age. HSPC respiration rates are as low as in purified human stem cells, in concert with a strong expression signature for fatty acid metabolism. The pool of quiescent stem cells is higher than in mice, and the cell cycle of hematopoietic cells is prolonged. By characterizing the NMR hematopoietic landscape, we identified resilience phenotypes such as an increased quiescent HSPC compartment, absence of age-related decline, and neotenic traits likely geared toward longevity.


Assuntos
Envelhecimento , Ratos-Toupeira , Adulto , Envelhecimento/metabolismo , Animais , Hematopoese , Humanos , Camundongos , Pessoa de Meia-Idade , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Fenótipo , Células-Tronco
19.
J Proteome Res ; 21(6): 1495-1509, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35584362

RESUMO

The oxidation of methionine has emerged as an important post-translational modification of proteins. A number of studies have suggested that the oxidation of methionines in select proteins can have diverse impacts on cell physiology, ranging from detrimental effects on protein stability to functional roles in cell signaling. Despite its importance, the large-scale investigation of methionine oxidation in a complex matrix, such as the cellular proteome, has been hampered by technical limitations. We report a methodology, methionine oxidation by blocking (MobB), that allows for accurate and precise quantification of low levels of methionine oxidation typically observed in vivo. To demonstrate the utility of this methodology, we analyzed the brain tissues of young (6 m.o.) and old (20 m.o.) mice and identified over 280 novel sites for in vivo methionine oxidation. We further demonstrated that oxidation stoichiometries for specific methionine residues are highly consistent between individual animals and methionine sulfoxides are enriched in clusters of functionally related gene products including membrane and extracellular proteins. However, we did not detect significant changes in methionine oxidation in brains of old mice. Our results suggest that under normal conditions, methionine oxidation may be a biologically regulated process rather than a result of stochastic chemical damage.


Assuntos
Metionina , Processamento de Proteína Pós-Traducional , Animais , Encéfalo/metabolismo , Metionina/metabolismo , Camundongos , Oxirredução , Proteoma/genética , Proteoma/metabolismo
20.
Cell Metab ; 34(6): 836-856.e5, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580607

RESUMO

Mammals differ more than 100-fold in maximum lifespan. Here, we conducted comparative transcriptomics on 26 species with diverse lifespans. We identified thousands of genes with expression levels negatively or positively correlated with a species' maximum lifespan (Neg- or Pos-MLS genes). Neg-MLS genes are primarily involved in energy metabolism and inflammation. Pos-MLS genes show enrichment in DNA repair, microtubule organization, and RNA transport. Expression of Neg- and Pos-MLS genes is modulated by interventions, including mTOR and PI3K inhibition. Regulatory networks analysis showed that Neg-MLS genes are under circadian regulation possibly to avoid persistent high expression, whereas Pos-MLS genes are targets of master pluripotency regulators OCT4 and NANOG and are upregulated during somatic cell reprogramming. Pos-MLS genes are highly expressed during embryogenesis but significantly downregulated after birth. This work provides targets for anti-aging interventions by defining pathways correlating with longevity across mammals and uncovering circadian and pluripotency networks as central regulators of longevity.


Assuntos
Longevidade , Transcriptoma , Envelhecimento/fisiologia , Animais , Reparo do DNA , Longevidade/genética , Mamíferos/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...